Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.077
Filtrar
1.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607020

RESUMO

Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Humanos , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Janus Quinases/metabolismo , Gliose/complicações , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/terapia
2.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
3.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594388

RESUMO

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Assuntos
Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Astrócitos/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Linhagem Celular
4.
PLoS One ; 19(4): e0300203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564643

RESUMO

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Assuntos
Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Esclerose Múltipla/patologia , Astrócitos/metabolismo , Inflamação/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Lipids Health Dis ; 23(1): 113, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643113

RESUMO

BACKGROUND: Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aß) peptides are a well-described pathology in Alzheimer's disease (AD). Activated astrocytes surrounding Aß plaques contribute to inflammation by secreting proinflammatory factors. While astrocytes may phagocytize Aß and contribute to Aß clearance, reactive astrocytes may also increase Aß production. Therefore, identifying factors that can attenuate astrocyte activation and neuroinflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti-inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signaling and known AD pathologies in vitro. METHODS: PLs from salmon and yogurt were extracted using novel food-grade techniques and their fatty acid profile was determined using LC/MS. The effect of PLs on parameters such as astrocyte activation and generation of oxygen species (ROS) was assessed. Additionally, effects of the secretome of astrocytes treated with these polar lipids on aged neurons was measured. RESULTS: We show that PLs obtained from salmon and yogurt lower astrocyte activation, the generation of reactive oxygen species (ROS), and extracellular Aß accumulation. Cell health of neurons exposed to the secretome of astrocytes treated with salmon-derived PLs and Aß was less affected than those treated with astrocytes exposed to Aß only. CONCLUSION: Our results highlight a novel underlying mechanism, why consuming PL-rich foods such as fish and dairy may reduce the risk of developing dementia and associated disorders.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipídeos
6.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589390

RESUMO

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Diagnóstico por Imagem , Córtex Cerebral/metabolismo , Sinalização do Cálcio/fisiologia
7.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
8.
Sci Rep ; 14(1): 8367, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600221

RESUMO

Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Animais , Epilepsia Pós-Traumática/etiologia , Astrócitos/metabolismo , Transcriptoma , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Convulsões , Perfilação da Expressão Gênica , Modelos Animais de Doenças
9.
Biol Res ; 57(1): 15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576018

RESUMO

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Assuntos
Alcoolismo , Conexina 43 , Camundongos , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Alcoolismo/metabolismo , Células Cultivadas , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
10.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
11.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534318

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Receptores Nicotínicos , Humanos , Doença de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrócitos/metabolismo
12.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534343

RESUMO

The role of RNA Binding Motif Protein 8a (RBM8A), an exon junction complex (EJC) component, in neurodevelopmental disorders has been increasingly studied for its crucial role in regulating multiple levels of gene expression. It regulates mRNA splicing, translation, and mRNA degradation and influences embryonic development. RBM8A protein is expressed in both neurons and astrocytes, but little is known about RBM8A's specific role in glial fibrillary acid protein (GFAP)-positive astrocytes. To address the role of RBM8A in astrocytes, we generated a conditional heterozygous knockout (KO) mouse line of Rbm8a in astrocytes using a GFAP-cre line. We confirmed a decreased expression of RBM8A in astrocytes of heterozygous conditional KO mice via RT-PCR and Sanger sequencing, as well as qRT-PCR, immunohistochemistry, and Western blot. Interestingly, these mice exhibit significantly increased movement and mobility, alongside sex-specific altered anxiety in the open field test (OFT) and elevated plus maze (OPM) tests. These tests, along with the rotarod test, suggest that these mice have normal motor coordination but hyperactive phenotypes. In addition, the haploinsufficiency of Rbm8a in astrocytes leads to a sex-specific change in astrocyte density in the dentate gyrus. This study further reveals the contribution of Rbm8a deletion to CNS pathology, generating more insights via the glial lens of an Rbm8a model of neurodevelopmental disorder.


Assuntos
Astrócitos , Neurônios , Masculino , Feminino , Camundongos , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Éxons , Locomoção , Proteínas de Ligação a RNA/metabolismo
13.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540798

RESUMO

Although granule cell dispersion (GCD) in the hippocampus is known to be an important feature associated with epileptic seizures in temporal lobe epilepsy (TLE), the endogenous molecules that regulate GCD are largely unknown. In the present study, we have examined whether there is any change in AEG-1 expression in the hippocampus of a kainic acid (KA)-induced mouse model of TLE. In addition, we have investigated whether the modulation of astrocyte elevated gene-1 (AEG-1) expression in the dentate gyrus (DG) by intracranial injection of adeno-associated virus 1 (AAV1) influences pathological phenotypes such as GCD formation and seizure susceptibility in a KA-treated mouse. We have identified that the protein expression of AEG-1 is upregulated in the DG of a KA-induced mouse model of TLE. We further demonstrated that AEG-1 upregulation by AAV1 delivery in the DG-induced anticonvulsant activities such as the delay of seizure onset and inhibition of spontaneous recurrent seizures (SRS) through GCD suppression in the mouse model of TLE, while the inhibition of AEG-1 expression increased susceptibility to seizures. The present observations suggest that AEG-1 is a potent regulator of GCD formation and seizure development associated with TLE, and the significant induction of AEG-1 in the DG may have therapeutic potential against epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Camundongos , Astrócitos/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo/metabolismo , Ácido Caínico/efeitos adversos , Ácido Caínico/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo
14.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
15.
Neuroreport ; 35(6): 406-412, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526919

RESUMO

Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1ß, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1ß, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.


Assuntos
Quimiocina CXCL13 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Dor Pós-Operatória , Receptores CXCR5 , Animais , Ratos , Astrócitos/metabolismo , Caspases , Quimiocina CXCL13/metabolismo , Interleucina-18 , Neuralgia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor Pós-Operatória/metabolismo , Ratos Sprague-Dawley , Receptores CXCR5/metabolismo , Proteínas Recombinantes
16.
Front Immunol ; 15: 1358719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533497

RESUMO

Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Humanos , Astrócitos/metabolismo , Lipocalina-2/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo
17.
Spinal Cord ; 62(4): 133-142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448665

RESUMO

STUDY DESIGN: A Systematic Review OBJECTIVES: To determine the therapeutic efficacy of in vivo reprogramming of astrocytes into neuronal-like cells in animal models of spinal cord injury (SCI). METHODS: PRISMA 2020 guidelines were utilized, and search engines Medline, Web of Science, Scopus, and Embase until June 2023 were used. Studies that examined the effects of converting astrocytes into neuron-like cells with any vector in all animal models were included, while conversion from other cells except for spinal astrocytes, chemical mechanisms to provide SCI models, brain injury population, and conversion without in-vivo experience were excluded. The risk of bias was calculated independently. RESULTS: 5302 manuscripts were initially identified and after eligibility assessment, 43 studies were included for full-text analysis. After final analysis, 13 manuscripts were included. All were graded as high-quality assessments. The transduction factors Sox2, Oct4, Klf4, fibroblast growth factor 4 (Fgf4) antibody, neurogenic differentiation 1 (Neurod1), zinc finger protein 521 (Zfp521), ginsenoside Rg1, and small molecules (LDN193189, CHIR99021, and DAPT) could effectively reprogramme astrocytes into neuron-like cells. The process was enhanced by p21-p53, or Notch signaling knockout, valproic acid, or chondroitin sulfate proteoglycan inhibitors. The type of mature neurons was both excitatory and inhibitory. CONCLUSION: Astrocyte reprogramming to neuronal-like cells in an animal model after SCI appears promising. The molecular and functional improvements after astrocyte reprogramming were demonstrated in vivo, and further investigation is required in this field.


Assuntos
Traumatismos da Medula Espinal , Animais , Astrócitos/metabolismo , Neurônios , Transdução de Sinais , Medula Espinal/metabolismo
18.
Glia ; 72(6): 1150-1164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436489

RESUMO

Ischemic stroke is the leading cause of adult disability. The rewiring of surviving neurons is the fundamental process for functional recovery. Accumulating evidence implicates astrocytes in synapses and neural circuits formation, but few studies have further studied how to enhance the effects of astrocytes on synapse and circuits after stroke and its impacts on post-stroke functional recovery. In this study, we made use of chemogenetics to specifically activate astrocytic Gi signaling in the peri-infarcted sensorimotor cortex at different time epochs in a mouse model of photothrombotic stroke. We found that early activation of astrocytic hM4Di after stroke by CNO modulates astrocyte activity and upregulates synaptogenic molecules including thrombospondin-1 (TSP1) as revealed by bulk RNA-sequencing, but no significant improvement was observed in dendritic spine density and behavioral performance in grid walking test. Interestingly, when the manipulation was initiated at the subacute phase of stroke, the recovery of spine density and motor function could be effectively promoted, accompanied by increased TSP1 expression. Our data highlight the important role of astrocytes in synapse remodeling during the repair phase of stroke and suggest astrocytic Gi signaling activation as a potential strategy for synapse regeneration, circuit rewiring, and functional recovery.


Assuntos
Astrócitos , Acidente Vascular Cerebral , Camundongos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Sinapses/metabolismo
19.
Cell Mol Life Sci ; 81(1): 139, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480559

RESUMO

Neurotoxic amyloid-ß (Aß) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the ß-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aß species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the ß-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aß1-x formation) lead to artificial Aß production, as N-terminally truncated Aß peptides are hardly present in these mouse brains. Meprin ß is an alternative ß-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aß2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aß2-x peptides by conditionally overexpressing meprin ß in astrocytes. We chose astrocytes as meprin ß was detected in this cell type in close proximity to Aß plaques in AD patients' brains. The meprin ß-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aß production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aß species in future studies.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Camundongos , Animais , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Astrócitos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Proteólise , Encéfalo/metabolismo
20.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473758

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of ß-amyloid plaques, tau tangles, neuroinflammation, and synaptic/neuronal loss, the latter being the strongest correlating factor with memory and cognitive impairment. Through an in vitro study on a neurons-astrocytes-microglia (NAM) co-culture system, we analyzed the effects of cerebrospinal fluid (CSF) samples from AD and non-AD patients (other neurodegenerative pathologies). Treatment with CSF from AD patients showed a loss of neurofilaments and spheroids, suggesting the presence of elements including CX3CL1 (soluble form), destabilizing the neurofilaments, cellular adhesion processes, and intercellular contacts. The NAM co-cultures were analyzed in immunofluorescence assays for several markers related to AD, such as through zymography, where the expression of proteolytic enzymes was quantified both in cell extracts and the co-cultures' conditioned medium (CM). Through qRT-PCR assays, several genes involved in the formation of ß-amyloid plaque, in phosphorylation of tau, and in inflammation pathways and MMP expression were investigated.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Técnicas de Cocultura , Astrócitos/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...